Venturi Injector Self operated chemical injector

Model F

(³/₄" x 0.9) • (³/₄" x 0.5)

- Operated by existing water pressure
- No moving parts
- Suitable for injection up to 1800 l/h
- Fast and simple operation
- Easily connected to computer
- Adaptable to all irrigation systems
- High quality materials resistance to chemicals used in agriculture
- Regulated chemical injection

Model A (¾" x 0.9) • (¾" x 0.5)

PRINCIPLE OF OPERATION

Operates on the principles of vacuum suction created by an advanced Venturi complex. This implements the latest know-how in hydraulic technology and allows the injectors to operate at small pressure differentials.

A vacuum is created as the water flows through a converging passage that gradually widens (see diagram).

Injection is activated when there is a pressure differential between the water entering the injectors and the water, and chemical leaving to the irrigation system.

This pressure differential is between 5-75% according to the required injection rate.

chemical suction area

INSTALLATION

Installation of injector as a bypass to a filter and pressure regulator

This method is used when the pressure regulator breaks less than the minimum required pressure differential and additional desired pressure drop is provided by a filter. This installation utilizes the combined pressure drop of the filter and pressure regulator to operate the injector and is particulary suitable for drip irrigation system.

This method is used when there is inadequate or undesirable pressure drop in the mains to activate the injetor. The booster pump creates additional pressure to activate the injector and prevent head loss to the system. There should be a check valve before the bypass.

SPECIFICATIONS REQUIRED FOR ORDERING CHEMICAL INJECTORS

- Minimum and maximum flow rate
- Permitted or required head loss
- Pressure at entry point of irrigation
- Flow rate of chemical to be injected into the system

INSTALLATION

③ Installation of injector as a bypass to a throttle manual valve

This method is based on a 30% pressure drop using the manual valve. Care should be taken to ensure that the output pressure is sufficient to operate the irrigation system.

6 Installation of injector as a bypass to an existing water pump

water pump

This method utilizes existing pressure differentials and saves additional energy.

④ Installation of injector as a bypass to pressure regulator

This method is based upon a sufficient pressure drop by the regulator without additional valves.

6 Installation of injector in line to the mains

This method is used in cases where the flow rate in the system is low or if pressure reduction is not a problem.

Model		A&F (¾")	D (2″ x 12)
Materials	Body	H.G. polypropylene copolymer	Plastic with fiberglass fill
	Internal pieces	Chemical resistant plastic	Chemical resistant plastic
Connections	Diameter	¾" male	2"
	Thread type	Male NPT, BSP	Female NPT, BSP
Dimensions	Height (mm)	352	380
	Length (mm)	290	520

PERFORMANCE DATA

OPER	ATING	MOD	EL A/F	MOD	EL A/F	MOI	DEL D	OPER	ATING	MOD	EL A/F
PRES	SURE	3/4 "	x 0.5	3/4">	(0.9	2 "	x 12	PRES	SURE	3/4"	x 0.5
Injecto	r Injector	Motive	Suction	Motive	Suction	Motive	Suction	Injecto	r Injector	Motive	Suction
Inlet	Outlet	Flow	Flow	Flow	Flow	Flow	Flow	Inlet	Outlet	Flow	Flow
m	m	l/h	l/h	l/h	l/h	m³/h	l/h	m	m	l/h	l/h
	3	272	120	522	215	6.8	1953		7	613	88
14	7	272	64	522	121	6.4	1351		_14	613	88
	8	272	33	522	75				21	613	88
	3	340	105	636	190				28	613	88
21	7	340	105	636	190			70		613	88
	10	340	64	636	138				42	613	61
	14	317	15	636	54				45	613	31
	3	386	97	726	176	9.0	1836		49	613	9
	7	386	97	726	176	9.0	1821		7	681	86
28	11	386	97	726	176				14	681	86
	14	386	70	726	162	9.0	1856		21	681	86
	17	386	35	726	66				28	681	86
	7	431	94	817	167				35	681	86
	10	431	94	817	167			84	42	681	86
	14	431	94	817	167				49	681	68
35	17	431	86	817	167				52	681	50
	21	431	42	817	95				56	681	22
	24	431	10	817	19				59	681	7
	7	476	92	885	162	10.0	1783		7	726	84
	14	476	92	885	162	10.8	1792		14	726	84
	17	476	92	885	162	10.8	1778		28	726	84
42	21	476	91	885	158				42	726	83
	24	476	58	885	99	10.8	1782		49	726	83
	28	476	24	885	44			98	56	726	83
	7	522	90	953	158				59	726	67
	14	522	90	953	158				63	726	46
	21	522	90	976	157				66	726	26
49	24	522	96	976	157				70	726	5
	28	522	69	976	127						
	31	522	38	976	61			• Test	on ¾" m	odel wa	s carried
	35	522	4.5	953	9			• Test	on 2" mo	odel was	s carried
	7	545	89	1044	151	12.3	1788	• Tabl	e applies	only if p	ipe supp
	14	545	88	1044	151	12.3	1778	of ta	ank is the	same as	s the Inje
	21	545	89	1044	150	122	1846	All data based on C.I.T (Center California) testing.			
	24	545	89	1044	150						
56	28	545	89	1044	150	12.2	1821			5	
	31	545	78	1044	141						
	35	545	45	1044	85	12.1	1606				
	38	545	14	1044	31						
	55	010			51						

OPERA PRESS	ATING SURE	MOD 3⁄4 "	EL A/F x 0.5	MODI ¾"x	EL A/F : 0.9	MOI 2 "	DEL D x 12
Injector	Injector	Motive	Suction	Motive	Suction	Motive	Suction
Inlet	Outlet	Flow	Flow	Flow	Flow	Flow	Flow
m	m	l/h	l/h	l/h	l/h	m³/h	l/h
	7	613	88	1158	141	13.8	1832
	14	613	88	1158	140	13.7	1832
	21	613	88	1158	140	13.7	1831
	28	613	88	1158	138	13.7	1816
70		613	88	1158	138	13.7	1846
	42	613	61	1158	125	13.7	1849
	45	613	31	1158	76		
	49	613	9	1158	31	13.5	1140
	7	681	86	1294	126	15.0	1901
	14	681	86	1294	126	15.0	1892
	21	681	86	1294	126	15.0	1911
	28	681	86	1271	126	15.0	1897
	35	681	86	1271	126	15.0	1866
84	42	681	86	1271	126	15.0	1861
	49	681	68	1271	126	15.0	1876
	52	681	50	1271	121		
	56	681	22	1271	72	15.0	1700
	59	681	7	1271	34		
98	7	726	84	1362	129		
	14	726	84	1362	129	16.3	1855
	28	726	84	1362	129	16.3	1851
	42	726	83	1362	129	16.3	1841
	49	726	83	1362	128	16.3	1831
	56	726	83	1362	128	16.3	1841
	59	726	67	1362	128		
	63	726	46	1362	110	16.3	1846
	66	726	26	1362	64	16.2	1686
	70	726	5	1362	28	16.2	1319

out with 12 mm pick-up hose. out with 25 mm pick-up hose.

lied with kit is used and height ctor.

for Irrigation Technology

