
echnical Information

Dimensions of RAF & RA

AF-A		1	Nom, I	Dia		Н	В	h	Weight	1
		mm		inch	mm				kg.	Connections
			40	1 1/2	159	80	96	29	1.8	Thread / Grooved
			50	2	190	100	125	38	3.9	Thread / Grooved
			50	2	190	159	165	76	7.9	Flange
			65	2 1/2	216	110	125	46	6.7	Thread / Grooved
			65	2 1/2	216	173	185	80	10.1	Flange
†			80-50-80	3-2-3	230	125	125	50	5.0	Thread / Grooved
			80-50-80	3-2-3	230	175	200	100	11.0	Flange
			80-65-80	3-2 1/2-3	244	127	138	50	5.4	Thread / Grooved
		Ð	80-65-80	3-2 1/2-3	216	192	200	92	11.4	Flange
I		-	80	3	290	138	200	50	10.4	Thread / Grooved
1 I			80	3	283	200	200	100	17.5	Flange
			100-80-100	4-3-4	283	222	222	111	20.1	Flange
ے			100	4	346	220	230	60	16.5	Thread / Grooved
			100	4	305	220	230	99	25.5	Flange
I		_	125-100-125	5-4-5	305	243	250	120	29.5	Flange
			150-100-150	6-4-6	325	285	285	143	35.8	Flange
			150	6	406	295	300	142	49.5	Flange
			200	8	470	383	354	160	71.0	Flange
			250	10	635	430	464	197	109.0	Flange
			300	12	749	474	480	234	140.0	Flange
			50	2	90	150	125	81	4.2	Thread / Grooved
			50	2	112	159	165	77	8.1	Flange
			65	2 1/2	112	160	125	83	7.0	Thread / Grooved
			65	2 1/2	122	160	185	83	11.0	Flange
			80-50-80	3-2-3	110	146	125	72	4.9	Thread / Grooved
		Ъ	80-50-80	3-2-3	140	200	200	100	12.0	Flange
		ð	80-65-80	3-2 1/2-3	130	170	140	86	6.2	Thread / Grooved
с т		Ĕ	80-65-80	3-2 1/2-3	130	215	200	115	12.4	Flange
		Ā	80	3	148	205	200	107	12.0	Thread / Grooved
			80	3	154	210	200	115	19.0	Flange
			100-80-100	4-3-4	155	225	220	110	21.0	Flange
1 1			100	4	150	227	230	118	15.9	Thread / Grooved
			100	4	177	230	230	113	26.5	Flange
			150	6	218	315	300	148	48.7	Flange

Recommended Working Conditions Range

Non	n. Dia.	Inlet Pres	sure, Bar	*Kv fa Fully oper	actor ned Valve	Control Chamber Volume	
mm	inch	Min.	Max.	RAF	RAF - A	Liter	Gallon
40	1.5	0.8	16	40		0.06	0.016
50	2	0.7	16	70	62	0.08	0.021
65	2.5	0.7	16	100	90	0.16	0.042
80-50-80	3-2-3	0.7	16	72	62	0.08	0.021
80-65-80	3-2.5-3	0.7	16	130	100	0.16	0.042
80	3	0.6	16	170	155	0.3	0.079
100-80-100	4-3-4	0.6	16	170	155	0.3	0.079
100	4	0.4	16	290	200	0.7	0.185
125-100-125	5-4-5	0.4	16	290	200	0.7	0.185
150-100-150	6-4-6	0.4	16	300	220	0.7	0.185
150	6	0.4	16	490	470	1.5	0.396
200	8	0.4	16	790	—	3.5	0.924
250	10	0.3	16	1400	_	7.6	2.006
300	12	0.3	16	1800	—	7.6	2.006

Q =	Κv	VΔP
-----	----	-----

Q = Flow rate, m³/h

A = Head loss across the valve, bars

Ą

6

ō

Cv = 1.16Kv

RAPHAEL N. Ind. Zone Or-Aqiva, P.O.Box 555, Israel, 30600. Tel. 972-4-6263555, Fax. 972-4-6263558 E - mail: export@raphael.co.il www.raphael.co.il

RAF GENERAL PURPOSE HYDRAULIC VALVES Technical Information

Technical Specifications

- Body and Cover: Cast Iron with Rilsan (Nylon 11) coating. Epoxy or enamel coating are available by request.
- Bolts, Nuts and Washers: Zinc plated Steel.
- Diaphragm: Natural Rubber reinforced with Nylon Fabric.

Working Pressure: Up to 16 bars.

Temperature Rating: -10°C to 80°C.

Size & Connections				
RAF	Threaded	1 ^{1/2} "-4"	ISO, BSP, NPT	
	Grooved	1 ¹ / ₂ "-4"	ISO, ANSI	
	Flanged	2"-12"	ISO, BSTD, JIS, ANSI, DIN	
RAF - A	Threaded	2''-4''	ISO, BSP, NPT	
	Grooved	2''-4''	ISO, ANSI	
	Flanged	2"-6"	ISO, BSTD, JIS, ANSI, DIN	

magenta

black

0

cyan

4 BASIC

RAF Valves are used for general water supply and irrigation. The RAF valves are made of only three parts, each one is made of durable materials. The inner flow passages are streamlined and coated with lowfriction materials. This provides quiet flow in both directions, low head-loss and minimal wear.

A special leaflet for each of the applications appearing in this brochure is available upon request.

Cross section of RAF valve

RAF valves operate with a patented reinforced diaphragm, which eliminates the need for a retaining metal spring. The special elastic design enables gradual and precise opening or closing of the valve. By eliminating a metal spring, the RAF is virtually maintenance free.

BASIC 1

RAF 1031

Electric Float

Control Valve

RAF 10 is used to maintain a preset water level in a reservoir or water tank in a simple manner. The RAF valve is activated by the

RAF 1031 is a normally closed electric float control valve, activated

The electric circuit is switched by a float hanging over the water

surface at the desired height. When the water level drops below

the float, the electric circuit is switched on and opens the RAF

1031 through a solenoid valve. As the rising water reaches the

float level, the circuit is disconnected and the RAF 1031 closes.

by line pressure

pump.

remote control device.

RAF 10

The RAF 10 stays open as long as the water level in the reservoir is Float Level Control below a preset level. As the water level rises and floats the pilot's Valve arm, the RAF gradually closes.

RAF 6300 is a piloted hydraulic valve activated by line pressure. The valve is normally closed, opens by hydraulic command. The valve reduces the line pressure to maintain a preset constant pressure downstream the RAF, at all flow rates. The set point of educed pressure is adjustable. The RAF 6300 is controlled by a three-way pilot valve, made of plastics. A spring-loaded membrane inside the pilot moves according to the downstream pressure changes. The pressure fluctuations are compensated by gradual opening and closing

RAF 68/683

Pressure Reducing/Sustaining Hydraulic Valve

of the RAF. RAF 68 and RAF 683 are piloted hydraulic valves activated by line pressure. Both pilots have spring-loaded membranes. One pilot is ensitive to upstream pressure and the other to downstream pressure. The combined operation of the two pilot valves sustains a constant pressure upstream of the RAF valve, and at the same time, reduce the downstream pressure to a preset pressure. The RAF valve opens or closes gradually to maintain both required

pressure. Normally the RAF 70/73 is partly open to allow a preset constant flow rate. The flow rate through the RAF 70/73 is determined indirectly using an orifice plate. The headloss across the orifice is proportio the actual flow rate. On rising headloss, the RAF 70/73 is automatically piloted to close. On the other case, the valve opens. Thus the flow rate is maintained constant, regardless of line pressure fluctuations or the downstream demand.

RAF 80/83

Pressure Sustaining/ Relief Valve

RAF 80/82 and RAF 83/83B are piloted hydraulic valves activated by line pressure. The pilot valve has a spring-loaded membrane which is exposed to the upstream pressure. The valve is normally closed. Only when the line pressure rises above a preset point, the RAF 80/83 opens to relieve the excessive pressure downstream without causing surge hazards. When the line pressure drops the RAF recloses.

Surge Anticipating

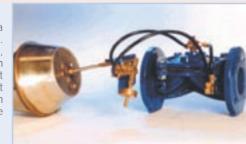
Hydraulic Valve

RAF 88

RAF 80Q is a piloted hydraulic valve activated by line pressure. The two-way pilot valve has a spring-loaded membrane which is sensitive to upstream pressure. The RAF 80Q is normally closed. As line pressure rises above the preset level, the valve opens quickly to relieve the excessive pressure.

RAF 88 is adjusted to eliminate hazardous pressure surges typical of water hammer conditions. A water hammer is caused by an abrupt shutoff of a pump or rapid closure of a main valve, causing a fast propagation of low pressure front, followed by an extremely high pressure back-wave. A series of pressure waves, each one composed of alternating low and high pressure, is created within a few minutes. **RAF 88** is a piloted hydraulic valve activated by line pressure. The valve has two pilots, for high and low pressure. Under normal conditions the RAF 88 is closed. It opens when the line pressure drops below a preset pressure, in anticipation to the following surge, and remains open until the fluctuations subside.

pressure. Normally the valve is open. Only in case of flow rate higher than a preset maximum, due to a burst or excessive demand downstream, the RAF 90/93 are automatically closed down and can reopen manual The actual flow rate through the RAF 90 is determined by comparing the headloss across an orifice plate. The valve is closed down by a hydraulic relay. The RAF 93 closes automatically whenever the upstream pressure drops below a preset point. It reopens manually.



RAF 20 valve regulates the pressure level during the start and shut-off of pumps to protect the pumping assembly and the downstream network. The **RAF 20** is applicable, with slightly different **RAF 20** layout and switching, for either vertical (deep well) or horizontal (booster) pumps. In both configurations, the **RAF 20** is connected electrically to the pump's control panel.

Pump Control Hydraulic Valve

RAF 13 Bi-Level vertical float control valve

RAF 13 is a level control valve, which uses a vertical float that activates a 3-way pilot. The float has maximum and minimum stoppers, adjustable according to level requirements, both changing the position of the pilot. When the float reaches maximum level stopper, the pilot commands the valve to close, and when reaching minimum level stopper, commands the valve to open.

RAF 30-33 valves are activated by line pressure. The valves open or close by electric command through a selection of solenoid valves. The solenoid opens or closes the RAF as it energized by an electric pulse.

RAF 30-33

Electric Control The electric pulse originates with a controller, timer, sensor or Hydraulic Valve

RAF 40

Altitude Control Hydraulic Valve

RAF 40 is used to maintain a preset water level of reservoir or water tank in a simple manner. The RAF valve is activated by line pressure. The **RAF 40** stays open as long as the water level of the reservoir is below a preset level. As the water level rises the RAF 40 gradually closes Three adjustable altitude ranges are provided.

Pressure Reducing Hydraulic Valve

RAF 60/62 and RAF 63/63B are piloted hydraulic valves activated by line pressure. The pilot valve has a spring-loaded membrane which is sensitive to downstream pressure. The pilot's spring is preset to a desirable reducing pressure. The pilot valve maintains a constant downstream pressure by gradually opening and closing of the RAF, at any flow rate.

RAF 60/63

pressures simultaneously.

RAF 70 and RAF 73 are piloted hydraulic valves activated by line

RAF 90 and RAF 93 are piloted hydraulic valves activated by line

RAF 6300

Pressure Reducing Hydraulic Remote Control Valve

RAF 70/73

Flow Rate Control

Hydraulic Valve

RAF 80Q

Quick Pressure Relief Valve

RAF 90/93

Anti Burst Control Valve

BASIC 3